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Constructing new periodic exact solutions of evolution equations
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For the nonlinear Schro¨dinger equation, the Korteweg–de Vries equation, and the modified Korteweg–de
Vries equation, periodic exact solutions are constructed from their stationary periodic solutions, by means of
the Bäcklund transformation. These periodic solutions were not written down explicitly before to our knowl-
edge. Their asymptotic behavior whent→2` is different from that whent→`. Near t50, the spatial-
temporal pattern can change abruptly, and rational solitons can appear randomly in space and time. They
correspond to new types of ‘‘homoclinic orbits’’ due to different asymptotic behaviors in time.
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PACS number~s!: 02.30.Jr, 05.45.2a, 42.65.Tg, 42.81.Dp
ic
ib
te
ee
ic
n
-
ua
sc

xa
on

nc
o
in

m

on
di

tio
n

o
ar

n
es
es
e
d
av

s,

nt
in-

e-
ec.
n

n

of

he

ved

ic
er

e

I. INTRODUCTION

As a hot spot in the research field of nonlinear dynam
and chaos, complicated spatial-temporal behavior descr
by nonlinear evolution equations has been studied in
sively in recent years. The evolution equations have b
investigated in many different directions, such as numer
simulation, qualitative analysis, perturbation analysis, a
search for exact solutions@1#. In the search for exact solu
tions for a wide range of integrable nonlinear evolution eq
tions, many methods have been developed: the inverse
tering method@2#, the Bäcklund transformation@3–5#, the
Painleve analysis@6,7#, the Lie group method@8#, the direct
algebraic method@9#, the tangent hyperbolic method@10#,
etc. Most of these methods have been used to find e
solutions for evolution equations with a boundary conditi
at infinity.

The need to findperiodic exact solutions of evolution
equations has significantly increased recently. For insta
the series of beautiful works by Wiggins and coauthors
homoclinic orbits, multijumped impulse orbits, and chaos
high-dimensional or infinite-dimensional dynamical syste
are on systems under a periodic boundary condition@11,12#.
Some periodic exact solutions of some evolution equati
have already been found. For example, a family of perio
solutions of the nonlinear Schro¨dinger ~NLS! equation have
been found by assuming the solution is a special combina
of a time-independent function, a space-independent fu
tion, and a function of both time and space@13#.

In this paper, we construct new periodic exact solutions
an integrable nonlinear evolution equation from its station
periodic solutions by using the Ba¨cklund transformation and
the associated Ablowitz-Kaup-Newell-Segur~AKNS! sys-
tem. Using this method, we find new periodic exact solutio
analytically for the NLS equation, the Korteweg–de Vri
~KdV! equation, and the modified Korteweg–de Vri
~MKdV ! equation. These periodic solutions have not be
explicitly written down previously, to our knowledge, an
therefore are called new solutions. The new solutions h
interesting features. They are kink solutions~i.e., solutions
PRE 601063-651X/99/60~4!/3589~8!/$15.00
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whose asymptotic behavior whent→` is different from that
when t→2`). Their spatial-temporal pattern change
gradually or abruptly, neart50. The new periodic solutions
correspond to new types of homoclinic orbits with differe
asymptotic behaviors when time tends to plus or minus
finity.

The method of constructing periodic solutions is d
scribed in Sec. II, and applied to the NLS equation in S
III, the KdV equation in Sec. IV, and the MKdV equation i
Sec V.

II. THE METHOD

Let q(x,t) be a known solution of an integrable evolutio
equation, then a new solution, denoted byq̃(x,t), can be
obtained by using the following Ba¨cklund transformation
@3#:

q̃~x,t !5q~x,t !1W„h,G~x,t !…, ~1!

whereW is a function whose form depends on the form
the evolution equation,h is a constant, andG is given by the
solution of the following AKNS system associated to t
original evolution equation:

]xF5S h q

2r h DF, ] tF5S A B

C 2ADF. ~2!

Here F(x,t)5„f1(x,t),f2(x,t)…T is the unknown function
(T denotes transpose!, r ~andq) is a function ofx andt, and
A, B, andC are functions ofq, r, andh. These functions are
chosen so that the original evolution equation can be deri
from Fxt5F tx . The functionG(x,t) in Eq. ~1! is given by
G5f1 /f2.

In this paper, we focus on how to construct a period
solution from a known stationary periodic solution. In oth
words,q(x,t)5q(x), andq(x) and q̃(x,t) are periodic inx.
Denote the period byL. We consider the case where th
functions in the AKNS system,r , A, B, andC, are all time
independent and periodic inx with periodL. So, Eq.~2! and
3589 © 1999 The American Physical Society
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the identity Fxt5F tx imply that f2(x,t) satisfiesCf2x
2rf2t5

1
2 Cxf2, which can be solved by the method of cha

acteristics. Therefore the solution of the AKNS system c
be written as

f1~x,t !52
1

AC
@F8~j!2AF~j!#, ~3!

f2~x,t !5ACF~j!,

whereF is a function ofj and

j5s~x!2t, s~x!52E
0

x r ~y!

C~y!
dy. ~4!

Substituting Eq.~3! into Eq. ~2!, we find thatF(j) satisfies

F9~j!2a~h!F~j!50, ~5!

where

a~h!5A21BC ~6!

depends on neitherx nor t. Here we have used (d/dx)(A2

1BC)50 because ofFxt5F tx , and of periodicity and time
independence of the functionsA, B, andC. Hence,

G~x,t !52
1

C
@ f ~j!2A#, ~7!

where f (j)5F8(j)/F(j) is given by

f ~j!5H 1

j1c0
, if a50

2v tan~vj1c0! if aÞ0, v5A2a~h!.

~8!

Herec0 is a constant of integration. If the evolution equati
is to be solved in the real space, then, for the case oa
Þ0, f (j) is simplified to the tangent function ofj if a,0,
and to the hyperbolic tangent function ofj if a.0. On the
other hand, if the evolution equation is to be solved in
complex space, thenv, j, andc0 are all complex and can b
written as c05c11 ic2 , v5v11 iv2 and j5j11 i j2.
Therefore, for the case ofaÞ0, f (j)52v(sinu1 coshu2
1 i cosu1 sinhu2)/(cosu1 coshu22 i sinu1 sinhu2), where
u15v1j12v2j21c1 and u25v1j21v2j11c2 are real.
And the derivative of f (j) is f 8(j)52v/(cosu1 coshu2
2 i sinu1 sinhu2)2. We also note that, because of the tang
function in Eq.~8!, the new solution~1! may be singular.

Examining the expression~1! for the new solution, it is
easy to see that iff (j) is periodic inx then the new solution
is periodic because all other functions in Eq.~1! are periodic,
and f (j) is periodic if one of the following is true.~i! j is
periodic inx. That is,s(x) given in Eq.~4! is periodic, or,
because of the periodicity ofr (x) andC(x),

b~h!50, ~9!

where

b~h!52s~L !5E
0

L r ~x!

C~x!
dx. ~10!
n

e

t

Here we note that the functionC(x) takesh as a parameter
as defined in the AKNS system.~ii ! j is not periodic, but the
evolution equation is to be solved in the real space and

b~h!A2a~h!5
np

L
and a~h!,0, ~11!

wheren is a nonzero integer. In this case,f (j) is the tangent
function of j, which is periodic, of course.

It is clear now that in order to have the new solution~1!
periodic,G(x,t) should be as given in Eq.~7!, andh should
satisfy either condition~9! or ~11!. Using suchh and G, a
new periodic solution can be constructed in the form of E
~1!. In the following sections, we apply this method of co
structing new periodic solutions to the ‘‘universal’’ nonline
evolution equations: the NLS, the KdV, and the MKd
equation.

III. THE NLS EQUATION

The NLS equation can be written as

iqt1qxx12uqu2q50, 0<x<L, 2`,t,` ~12!

whereq(x,t) is a complex function. As shown in Appendi
A, the equation has the following stationary solution wi
two parameters,g andh, whenh.3(g4/2)2/3:

q~x!5@a cn2~Aa2cx,k!1b sn2~Aa2cx,k!#1/2

3expF i S g2

aAa2c
P~c,m,k!1c1D G , ~13!

where, in the amplitude part, cn(•,•) and sn(•,•)
are Jacobian elliptic functions,a52Ah/3 cos(u/3), b
52Ah/3 cos@(4p1u)/3#, andc52Ah/3 cos@(2p1u)/3# for u
given by 2g452(h/3)3/2cosu and p/2,u,p, and k
5A(a2b)/(a2c) for 0,k, 1

2 . In the phase,P(•,•,•) is
the normal elliptic integral of the third kind,c
5am(Aa2cx,k) @function am(•,•) is the amplitude func-
tion#, m5(a2b)/a, andc1 is a constant of integration. Thi
solution is periodic with periodL if

2K~k!5LAa2c, ~14!

whereK(•) is the complete elliptic integral of the first kind
The stationary periodic solution forg50.05 is shown in Fig.
1~a!. @The other parameterh is determined by Eq.~14!.# The
system length isL510 in this figure, and in all other figure
in this paper.

The functions in the AKNS system for the NLS equatio
are @3#

r 52q* , A52ih21 i uqu2,

B5 iqx12iq, C5 iqx* 22ihq* , ~15!

where* denotes complex conjugate. Therefores(x) is given
by
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s~x!5 i E a cn2~X,k!1b sn2~X,k!

~a2b!cn~X,k!sn~X,k!dn~X,k!12h~a2b!cn2~X,k!1~ ig212hb!
dx, ~16!

FIG. 1. Periodic solutions of
the NLS equation for the constan
of integration g50.05. ~a! The
stationary periodic solution.~b!
The periodic solution constructe
from the stationary periodic
solution shown in ~a! when
h520.019 568 6i . a is real
and a,0. ~c! h561.018 77
20.271 375i . ~d! h560.459 084
20.051 386 4i . In both ~c! and
~d!, a(h) are complex.
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whereX5Aa2cx. Further, we have

a~h!524h22 i4hg222h. ~17!

The Bäcklund transformation for the NLS equation is@3#

q̃~x,t !5q~x!2
4hG

11uGu2
. ~18!

Substituting the stationary periodic solution~13! for the
functionq(x) in this transformation, Eq.~7! for the function
G, and taking a value ofh satisfying either Eq.~9! or Eq.
~11!, this transformation gives a new periodic solution of t
NLS equation.
Figures 1~b!, 1~c!, and 1~d! show the periodic solutions
constructed from the stationary periodic solution shown
Fig. 1~a!, with different values ofh satisfyingb(h)50. All
these solutions are kink solutions~i.e., having different as-
ymptotes!. In Fig. 1~b!, h is purely imaginary. So,a is real
anda,0 and the solution is given by a trigonometric fun
tion. The solution is oscillatory. The spatial-temporal patte
when t→2` and that whent→` are different from each
other. Therefore the pattern has to change at some time.
pattern changes gradually neart50. Figure 1~c! is for h
being a complex number with both the real part and
imaginary part nonzero. Thereforea is also complex and the
solutions are exponentials. We see from the figure that thx
dependence of the solution changes suddenly neart50, and
a number of rational solitons appear ‘‘randomly’’ in spa
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FIG. 2. Periodic solutions of
the KdV equation.~a! The station-
ary periodic solution for the con-
stant of integrationg50.5. ~b!
The periodic solution constructe
from the stationary periodic solu
tion shown in ~a! when h
560.2833. a(h) is real anda
.0. ~c! The periodic solution
constructed from the stationar
periodic solution for g510. h
560.3325 anda.0.
e
a

o
e

e
a

nly

uct
ec.
and time. Figure 1~d! is for another complex value ofh. The
spatial-temporal pattern is similar to Figure 1~c! except that
the solution whent→` is solitary @oscillatory in Fig. 1~c!#.
@In our numerical calculation, we could not find a value ofh
satisfying bothb(h)50 and a(h)50. Further analytical
and numerical works are needed.#

The solutions shown in Figs. 1~b!, 1~c!, and 1~d! were not
explicitly written down before, to our knowledge, and ther
fore are called new solutions. Each of them has
asymptotic behavior whent→1` different from that when
t→2`. Therefore they correspond to new types of h
moclinic orbits due to different asymptotic behaviors in tim

IV. THE KdV EQUATION

The KdV equation is

qt16qqx1qxxx50, 0<x<L, 2`,t,` ~19!

whereq(x,t) is a real function. As shown in Appendix B, th
equation has the following stationary solution with two p
rameters,g.0 andh,2(g/3)3/2:
-
n

-
.

-

q~x!5a cn2SAa2c

2
x,kD 1b sn2SAa2c

2
x,kD , ~20!

where a52Ag/3 cosu/3, b52Ag/3 cos(u14p)/3, c
52Ag/3 cos(u12p)/3, and k25(a2b)/(a2c) for 0,k
,1. Here u is given by h52(g/3)3/2cosu for 0,u,p.
This solution is periodic with periodL if

4K~k!5LA2~a2c!. ~21!

When a stationary solution is required to be periodic, o
one parameter (g or h, we chooseg) is independent and the
other parameter is determined by Eq.~21!. A stationary pe-
riodic solution is shown in Fig. 2~a! for g50.5.

From the stationary periodic solutions, we can constr
new periodic solutions by using the method described in S
II. The AKNS system~2! for the KdV equation is given by
@3#

r 521, A524h322hq2qx ,

B524h2q22hqx2qxx22q2, C54h212q. ~22!

From Eq.~4!, we have
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s~x!5
A2~a2c!

~4h212a!~a2c!
P~f,m,k!, ~23!

wherem52(a2b)/(4h212a), and

f5am~ 1
2 A2~a2c!x,k!

.

We also have, from Eq.~6!,

a~h!516h624h2g12h. ~24!

We further have, from Eq.~7!,

G52
1

4h212q~x!
@ f ~j!14h312hq~x!1q8~x!#,

~25!

where f (j) is given in Eq.~8!.
The Bäcklund transformation for the KdV equation is@3#

q̃~x,t !5q~x!22Gx . ~26!

Therefore, the new periodic solutions can be written as

q̃~x,t !5q~x!2
q8~x!

@2h21q~x!#2
@ f ~j!14h312hq~x!

1q8~x!#1
1

2@2h21q~x!#2
$2 f 8~j!

12@2h21q~x!#@2hq8~x!1q9~x!#%, ~27!

wheref (j) @and its derivativef 8(j)] is given in Eq.~8!, and
h satisfies either condition~9! or ~11!.

The asymptotic behavior fort→6` can be given analyti-
cally for the cases ofa(h).0 anda(h)50. Whena(h)
.0,

lim
t→6`

q̃~x,t !5
22h2q2~x!1~4h42g!q~x!12h2g22h

@2h21q~x!#2

2
vq8~x!

@2h21q~x!#2

3
sinh@vs~x!1c0#7cosh@vs~x!1c0#

cosh@vs~x!1c0#6sinh@vs~x!1c0#

for a~h!.0. ~28!

So, the asymptotic behavior whent→` is different from that
when t→2`, and the new solution is a kink solution. O
the other hand, whena(h)50, asymptotic behaviors whe
t→` and whent→2` are both dominated by the sam
term 1/@s(x)2t1c0#2, and therefore are the same, i.e.,

lim
t→6`

q̃~x,t !

5
22h2q2~x!1~4h42g!q~x!12h2g22h

@2h21q~x!#2

for a~h!50. ~29!

So, the new solution is not a kink solution whena50. When
a(h),0, the solution is a tangent function of time and m
produce a profound effect on complicated dynamical beh
ior when the system is perturbed.

Figures 2~b! and 2~c! show solutions given by Eq.~27! for
h satisfyingb(h)50. The values ofa, calculated from Eq.
~24!, are real and greater than zero for both figures.@In our
numerical study, we had not found a value ofh satisfying
b(h)50 that makesa(h)<0. If there exists such a negativ
a(h), then the solution contains tangent functions whi
may lead to a singular solution.# As expected, asymptotic
behavior of the solutions whent→` and whent→2` are
different from each other. Figure 2~b! is obtained wheng
50.5. Two stationary solitons~or, call them ‘‘cavitons’’!
coexist in time. Thex dependence of the solution chang
gradually neart50. Figure 2~c! is for g510. Only one sta-
tionary soliton exists at a time. The~spatial! location of the
soliton changes abruptly att50. The solutions shown in
Figs. 2~b! and 2~c! are new solutions. Their asymptotic be
haviors whent→1` are different from those whent→
2`. The new solutions correspond to new types of h
moclinic orbits.

V. THE MKdV EQUATION

Now we consider the MKdV equation

qt16q2qx1qxxx50, 0<x<L, 2`,t,` ~30!

whereq(x,t) is a real function. As shown in Appendix C, th
equation has the following stationary solutions characteri
by two parameters,g andh.2(3/2)(g/2)4/3:

q~x!5
~q2U2q1V!cn~AUVx,k!1q1V1q2U

~U2V!cn~AUVx,k!1U1V
, ~31!

where q15 1
2 (2b1A2b224g/b), q25 1

2 (2b
2A2b224g/b), U5(b22bA2b224g/b22g/b)1/2, V

5(b21bA2b224g/b22g/b)1/2, and k5@ 1
2

23b2/(4UV)#1/2 for 0,k, 1
2 . Here b52$@2g2

1A4g41(4h/3)3#1/31@2g22A4g41(4h/3)3#1/3%1/2. This
solution is periodic with periodL if

4K~k!5LAUV. ~32!

Figure 3~a! shows the stationary periodic solution fo
g520.05.
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FIG. 3. The periodic solutions
of the MKdV equation for the
constant of integrationg520.05.
~a! The stationary periodic solu
tion. ~b! The periodic solution
constructed from the stationar
periodic solution shown in~a!
when h560.2074.a is real and
a,0. ~c! Same as~b! but h
561.4539 anda.0.
s

where A15(q2U2q1V)(U2V), A252(q2U2q1V)(U
1V)12(q12q2)UV(U2V), A35(U1V)212(q1
2q2)UV(U1V), A45@g14h2(q2U2q1V)/(U2V)#(U
2V)2, A552@g14h2(q2U2q1V)/(U2V)#(U22V2)
18h2(q12q2)UV(U2V), A6522h(U2V)AUV,
and A75@g14h2(q2U2q1V)/(U2V)#(U1V)218h2(q1
2q2)UV(U1V). Further, from Eq.~6!,
a~h!516h62g224h2h, ~35!

whereh depends ong due to Eq.~32!.
The Bäcklund transformation for the MKdV equation i

@3#
The functions in the AKNS system for the MKdV equa
tion are given by@3#

r 52q, A524h322hq2, ~33!
- B52qxx22hqx24hq222q3,

C5qxx22hqx14h2q12q3.

Thus,
s~x!5E A1 cn2~AUVx,k!1A2 cn~AUVx,k!1A3

A4 cn2~AUVx,k!1A5 cn~AUVx,k!1A6 sn~AUVx,k!dn~AUVx,k!1A7

dx, ~34!
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q̃~x,t !5q~x!2
Gx

~11G2!
. ~36!

From Eq.~7!, we have

G52@g22hq8~x!14h2q~x!#@ f ~j!14h312hq2~x!#,

~37!

and therefore

Gx5@2hq9~x!24h2q8~x!#@ f ~j!14h312hq2~x!#

2@g22hq8~x!14h2q9~x!#

3F q~x!

g22hq8~x!14h2q~x!
f 8~j!14hq~x!q8~x!G ,

~38!

where f (j) is given in Eq.~8!. If one can find a value ofh
satisfying either Eq.~9! or Eq. ~11!, then a new solution is
obtained by substituting the expressions forG and Gx into
Eq. ~36!.

Figures 3~b! and 3~c! show the new solutions whenh is
required to satisfyb(h)50. Figure 3~b! is for a,0. It is
interesting to observe that rational solitons appear rando
in space and time. Figure 3~c! is for a.0, where the solution
is oscillatory whent,0 and is solitary whent.0. The pat-
tern change occurs abruptly att50 but no rational soliton
appears. The new solutions shown in Figs. 3~b! and 3~c!
have the feature that their asymptotic behaviors whent→
1` are different from those whent→2`. They correspond
to new types of homoclinic orbits.

VI. CONCLUSIONS

For a integrable nonlinear evolution equation with the p
riodic boundary condition, we use the Ba¨cklund transforma-
tion to construct a periodic solution from the stationary p
riodic solution. We give explicit conditions which should b
satisfied by the constanth needed in the transformation du
to the required periodicity. The functionG needed in the
transformation to construct a periodic solution is also giv
explicitly. Hence we are able to give the analytical expr
sion of the newly constructed solution. The time depende
of the new solution can be the inverse, the tangent, the
perbolic tangent, or a combination of exponentials.

We apply this method to the NLS, the KdV, and th
MKdV equation. The periodic solutions are given analy
cally. They are new because they were not explicitly writt
down before. Numerical visualizations of the new solutio
are also given. All new solutions we obtained are kink so
tions. Therefore a pattern change should occur in a t
~neart50). The change can be gradual or abrupt, and can
accompanied by the appearance of rational solitons dis
uted randomly in space and time. These new periodic s
tions correspond to new types of homoclinic orbits due
different asymptotic behaviors in time.
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APPENDIX A: THE STATIONARY PERIODIC SOLUTION
OF THE NLS EQUATION

A stationary solution of the NLS equation~12! can be
written asq(x)5r(x)eif(x), where the amplitude function
r(x) and the phase functionf(x) are real functions satisfy
ing

rxx2r~fx!
212r350, ~A1!

2rxfx1rfxx50. ~A2!

The second equation can be written asrAfx5g, whereg is
a constant of integration. Therefore ther motion is given by
rxx2g4/r312r350. Equivalently, ther motion is gov-
erned by the Hamiltonian

H~r,rx!5
1

2
rx

21
g4

2r2
1

1

2
r45

h

2
, ~A3!

whereh is a constant of motion. Hence, there are two ce
ters, at (r,rx)5„(g4/2)1/6,0… and „2(g4/2)1/6,0…. When h
.h053(g4/2)2/3, periodic orbits exist in the neighborhoo
of the centers. Letu5r2/A2, then Eq.~A3! becomes

1

2
ux

21g41u35hu. ~A4!

We write this equation as

ux
2522~u2a!~u2b!~u2c!, ~A5!

wherea, b, andc are roots ofux
2522(u31hu2g4). Explic-

itly, we havea52Ah/3 cos(u/3), b52Ah/3 cos@(4p1u)/3#,
c52Ah/3 cos@(2p1u)/3#, where u is given by 2g4

52(h/3)3/2cosu for p/2,u,p. Therefore, the amplitude
function r(x) is as given in Eq.~13! with modulus k
5A(a2b)/(a2c) for 0,k, 1

2 . The expression for the
phase functionf(x), as given in Eq.~13!, can be obtained
from fx5g2/r2.

According to periodicity of the Jacobian elliptic function
solution ~13! is periodic if Eq.~14! is satisfied.

APPENDIX B: THE STATIONARY PERIODIC SOLUTION
OF THE KdV EQUATION

A stationary solution of the KdV equation~19! satisfies

3q21qxx5g, ~B1!

whereg is a constant of integration. This equation is equiv
lent to Hamilton’s equations of motion with the Hamiltonia
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H5
1

2
p21q32gq5h, ~B2!

where p5qx and h is a constant. Wheng.0 and uhu,h0
52(g/3)3/2, this equation can be written as

qx
2522~q2a!~q2b!~q2c!, ~B3!

where a52Ag/3 cosu/3, b52Ag/3 cos(u14p)/3, and c
52Ag/3 cos(u12p)/3 are roots ofp2522(q32gq2h).
Here u is given byh52(g/3)3/2cosu for 0,u,p. In the
phase space, there is a center at (q,p)5(Ag/3,0) and a
saddle point at (2Ag/3,0) for the Hamiltonian system. In
the neighborhood of the center, Eq.~B3! has solution~20!
with modulusk5A(a2b)/(a2c) for 0,k,1. The solu-
tion ~20! takesg andh as parameters.

According to periodicity of the Jacobian elliptic function
solution ~20! is periodic if Eq.~21! is satisfied.

APPENDIX C: THE STATIONARY PERIODIC SOLUTION
OF THE MKdV EQUATION

The stationary solution of the MKdV equation~30! satis-
fies

qxx12q35g, ~C1!
,

li-

th

-

where g is a constant. This system is equivalent to t
Hamiltonian system with the Hamiltonian

H5
1

2
p21

1

2
q42gq5

h

2
, ~C2!

whereh is a constant. In the phase space, there exists o
one center, at (q,p)5„(g/2)1/3,0…. When h.h052(3/
2)(g/2)4/3, there is a family of periodic orbits surroundin
the center.

To find the solution of the Hamiltonian system, we wri
Eq. ~C2! as

qx
25~q2q1!~q2q2!~q2q3!~q2q4!, ~C3!

where q15 1
2 (2b1Ab224c1), q25 1

2 (2b2Ab224c1),
q35 1

2 (2b1 iA4c22b2), and q45 1
2 (2b2 iA4c22b2)

are roots of p252 1
2 q41gq1h. Here b5$@2g2

1A4g41(4h/3)3#1/31@2g22A4g41(4h/3)3#1/3%1/2, c1
5b2/21g/b, and c25b2/22g/b. Equation~C3! has solu-

tion ~31! with modulus k5@ 1
2 23b2/(4A2b414g2/b2)#1/2

for 0,k, 1
2 .

According to periodicity of the Jacobian elliptic function
solution ~31! is periodic if Eq.~32! is satisfied.
, J.
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