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Constructing new periodic exact solutions of evolution equations
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For the nonlinear Schdinger equation, the Korteweg—de Vries equation, and the modified Korteweg—de
Vries equation, periodic exact solutions are constructed from their stationary periodic solutions, by means of
the Backlund transformation. These periodic solutions were not written down explicitly before to our knowl-
edge. Their asymptotic behavior wheéns —« is different from that whert—o. Neart=0, the spatial-
temporal pattern can change abruptly, and rational solitons can appear randomly in space and time. They
correspond to new types of “homoclinic orbits” due to different asymptotic behaviors in time.
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PACS numbes): 02.30.Jr, 05.45-a, 42.65.Tg, 42.81.Dp

[. INTRODUCTION whose asymptotic behavior whén-« is different from that
when t— —«). Their spatial-temporal pattern changes,

As a hot spot in the research field of nonlinear dynamicsgradually or abruptly, nedr=0. The new periodic solutions
and chaos, complicated spatial-temporal behavior describegbrrespond to new types of homoclinic orbits with different
by nonlinear evolution equations has been studied intenasymptotic behaviors when time tends to plus or minus in-
sively in recent years. The evolution equations have beefinity.
investigated in many different directions, such as numerical The method of constructing periodic solutions is de-
simulation, qualitative analysis, perturbation analysis, angcribed in Sec. Il, and applied to the NLS equation in Sec.
search for exact solutiorfd]. In the search for exact solu- !l the KdV equation in Sec. IV, and the MKdV equation in
tions for a wide range of integrable nonlinear evolution equa-Sec V.
tions, many methods have been developed: the inverse scat-
tering method[2], the Baklund transformatiori3-5], the
Painleve analysif6,7], the Lie group methof8], the direct Il. THE METHOD

algebraic method9], the tangent hyperbolic methdd0], Let q(x,t) be a known solution of an integrable evolution

etc. Most of these_ methods_ have_been used to find _e_xagquation, then a new solution, denoted &x,t), can be
s?!u]tc!o:s for evolution equations with a boundary condition pi~ined by using the following B&lund transformation
at infinity.

The need to findperiodic exact solutions of evolution
equations has significantly increased recently. For instance, ax,t)=q(x,t) +W(7,L(x,t)), )
the series of beautiful works by Wiggins and coauthors on
homoclinic orbits, multijumped impulse orbits, and chaos inwhereW is a function whose form depends on the form of
high-dimensional or infinite-dimensional dynamical systemghe evolution equationy is a constant, anti is given by the
are on systems under a periodic boundary conditidn12. solution of the following AKNS system associated to the
Some periodic exact solutions of some evolution equationsriginal evolution equation:
have already been found. For example, a family of periodic
solutions of the nonlinear Schiimger (NLS) equation have P cp—( 7 q o 9 q)_(

. . . . . . X - y t -

been found by assuming the solution is a special combination 7
of a time-independent function, a space-independent func- . .
tion, and a function of both time and spdde]. Here @ (x,t) = (#1(x,1), ¢(x,t))" is the unknown function

In this paper, we construct new periodic exact solutions of T denotes transposer (andq) is a function ofx andt, and
an integrable nonlinear evolution equation from its stationary® B, andC are functions ofj, r, and#. These functions are
periodic solutions by using the Bllund transformation and chosen so that the original evolution equation can be derived
the associated Ablowitz-Kaup-Newell-Seg(hKNS) sys-  from @,,=®d,,. The functionI'(x,t) in Eq. (1) is given by
tem. Using this method, we find new periodic exact solutiond = ®1/ 2.
analytically for the NLS equation, the Korteweg—de Vries In this paper, we focus on how to construct a periodic
(KdV) equation, and the modified Korteweg—de Vries solution from a known stationary periodic solution. In other
(MKdV) equation. These periodic solutions have not beemwords,q(x,t)=q(x), andg(x) andq(x,t) are periodic inx.
explicitly written down previously, to our knowledge, and Denote the period by.. We consider the case where the
therefore are called new solutions. The new solutions havéunctions in the AKNS systenr, A, B, andC, are all time
interesting features. They are kink solutiofi®., solutions independent and periodic iwith periodL. So, Eq.(2) and

A B
Cc —-A

)(I). 2
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the identity ®,,=®,, imply that ¢,(x,t) satisfiesCdp,, Here we note that the functid(x) takes# as a parameter,
—T1 ¢po.=3C, b, Which can be solved by the method of char- as defined in the AKNS systertii) ¢ is not periodic, but the
acteristics. Therefore the solution of the AKNS system carevolution equation is to be solved in the real space and
be written as

B =alp=" and a(y)<0, (11

1
¢1(X,t)=—\/—E[F’(§)—AF(§)], )
wheren is a nonzero integer. In this cad€¢) is the tangent
bo(X, 1) = JC (&), function of &, which is periodic, of course.

It is clear now that in order to have the new solutidn

whereF is a function of¢ and periodic,I"(x,t) should be as given in Eq7), and » should
satisfy either condition9) or (11). Using suchn andT’, a

xr(y) new periodic solution can be constructed in the form of Eq.

£=oX)=t, o(x)= _f @ (1. Inthe following sections, we apply this method of con-

0 C(y) Y _ Ng ¢ : ! _
structing new periodic solutions to the “universal” nonlinear
Substituting Eq(3) into Eq. (2), we find thatF (&) satisfies  evolution equations: the NLS, the KdV, and the MKdV

equation.
F"(§)—a(n)F(§)=0, (5

where
) Ill. THE NLS EQUATION
=A“+BC 6

a(n) © The NLS equation can be written as
depends on neithet nor t. Here we have usedd(dx)(A? ) 5
+BC)=0 because ofb,,= ®,,, and of periodicity and time igi+at2[g"g=0, O=xsL, —»<t<w (12
independence of the functiors B, andC. Hence, ) ) . )

whereq(x,t) is a complex function. As shown in Appendix

1 A, the equation has the following stationary solution with
F(xt)=- E[f(g)_A]’ (7)  two parametersy andh, whenh>3(y*/2)¥%
wheref(&)=F'(£)/F(&) is given by q(x)=[acr(\a—cxk)+b srf(\a—cx,k)]*?
§+10 ; if a=0 ( e )
f(é)= 0 8 Xexp i II(¢,mk)+cq| |, 13

—wtanwé+cy) if a#0, w=vV—a(7).

Herec, is a constant of integration. If the evolution equation where, in ) the gmphtude _part, cn() and sng,-)
is to be solved in the real space, then, for the caserof &€ Jacobian elliptic functionsa=2yh/3cos@/3), b

#0, f(&) is simplified to the tangent function @fif «<O0, :_2\/h_/3C°$(4ZT+ 0)/3], 3a/2dc=2¢ﬁco$(2w+ 6)/3] for 6
and to the hyperbolic tangent function fif «>0. On the 9iven by —y"=2(h/3) cos¢ and m/2<f<m, and k
other hand, if the evolution equation is to be solved in the= V(a—b)/(a—c) for 0<k<3z. In the phasell(,-,-) is
complex space, thea, &, andc, are all complex and can be the normal elliptic integral of the third kind,y
written as cy=C;+iC,, w=w;+iw, and &=¢& +ié,. =am(ya—cx,k) [function am(,-) is the amplitude func-
Therefore, for the case af#0, f(£)=— w(sinu;coshu, tion], m=(a—b)/a, andc, is a constant of integration. This
+i cosu, sinhu,)/(cosu, coshu,—i sinu; sinhu,), where  solution is periodic with period. if

U= w1é1—wrés+cq and Uy,=w &+ wyr€1+C, are real.

And the derivative off(¢) is f’(&)=— w/(cosu, coshu, 2K(k)=Lva-c, (14)
—i sinuy sinhu,)?. We also note that, because of the tangent i o _ _
function in Eq.(8), the new solutior(1) may be singular. whereK(-) is the complete elliptic integral of the first kind.

Examining the expressiofl) for the new solution, it is 1he stationary periodic solution for=0.05 is shown in Fig.
easy to see that ff(¢) is periodic inx then the new solution 1(&). [The other parametéris determined by Eq14).] The
is periodic because all other functions in Ej are periodic, ~Systeém length i& =10 in this figure, and in all other figures
andf(&) is periodic if one of the following is true(i) £ is N this paper.

periodic inx. That is,o(x) given in Eq.(4) is periodic, or, The functions in the AKNS system for the NLS equation
because of the periodicity af{x) andC(x), are[3]
B(m)=0, 9) r=—q*, A=2iy’+ilql?,
where B=igx+2iq, C=iq} —2inq*, (15
B(m)=—o(L)= f:%dx. (10) \tljvjlere* denotes complex conjugate. Therefor) is given
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Space (b) Time

FIG. 1. Periodic solutions of
the NLS equation for the constant
of integration y=0.05. (@) The
stationary periodic solution(b)
The periodic solution constructed
from the stationary periodic
solution shown in (@ when
7=-—0.0195686. o« is real
and a<0. (¢) »==x1.01877
—0.271375. (d) »==*0.459 084
—0.0513864. In both (c) and
(d), a(n) are complex.

Space Time

_ acrf(X,k) +b sr(X,k)
a(x):|f - dx, (16)
(a—b)en(X,k)sn(X,k)dn(X,k) +27(a—b)cré(X,k) + (i ¥+ 2 b)
w
whereX = \/a—cx. Further, we have Figures 1b), 1(c), and 1d) show the periodic solutions
constructed from the stationary periodic solution shown in
a(n)=—4n*—idny*-2h. a7 Fig. 1(a), with different values ofy satisfyingB(7)=0. All
these solutions are kink solutiorise., having different as-
The Baklund transformation for the NLS equation[3] ymptotes. In Fig. 1b), » is purely imaginary. Sog is real

and <0 and the solution is given by a trigonometric func-
AT tion. The solution is oscillatory. The spatial-temporal pattern
~ n .
q(x,t)=q(x)— ———. (18 whent— —o and that whert— o are different from each
1+T|? other. Therefore the pattern has to change at some time. The
pattern changes gradually near 0. Figure 1c) is for #
Substituting the stationary periodic solutiqd3) for the  being a complex number with both the real part and the
functiong(x) in this transformation, Eq7) for the function imaginary part nonzero. Therefoseis also complex and the
I', and taking a value o¥; satisfying either Eq(9) or Eq.  solutions are exponentials. We see from the figure thakthe
(11), this transformation gives a new periodic solution of thedependence of the solution changes suddenly nefr, and
NLS equation. a number of rational solitons appear “randomly” in space
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FIG. 2. Periodic solutions of
the KdV equation(a) The station-
ary periodic solution for the con-
stant of integrationy=0.5. (b)
The periodic solution constructed
from the stationary periodic solu-
tion shown in (@ when 7z
=+0.2833. a(7) is real anda
>0. (c) The periodic solution
constructed from the stationary
periodic solution for y=10. #
=+0.3325 andx>0.

-500
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-1000

q(x

-1500
10

Space Time

and time. Figure () is for another complex value aj. The a—c a—c
spatial-temporal pattern is similar to Figurécjlexcept that q(x)=acr? \/?x,k +bsr?( \/jx,k>, (20)
the solution whert—« is solitary[oscillatory in Fig. 1c)].
[In our numerical calculation, we could not find a valueof where a=2.y/3cost/3, b=2\y/3cosp+4m)/3, c
satisfying both3(7)=0 and «(7)=0. Further analytical =2./y/3cos@+2m)/3, and k?=(a—b)/(a—c) for 0<k
and numerical works are needgd. <1. Here ¢ is given by h=2(y/3)%?cos# for 0< <.
The solutions shown in Figs(l), 1(c), and 1d) were not  This solution is periodic with period if
explicitly written down before, to our knowledge, and there-
fore are called new solutions. Each of them has an 4K(k)=Lv2(a—c). (21
asymptotic behavior when— + different from that when \yhen a stationary solution is required to be periodic, only
t——o. Therefore they correspond to new types of ho-gne parametery or h, we choosey) is independent and the
moclinic orbits due to different asymptotic behaviors in time. gther parameter is determined by Eg1). A stationary pe-
riodic solution is shown in Fig. (&) for y=0.5.
From the stationary periodic solutions, we can construct
IV. THE KdV EQUATION new periodic solutions by using the method described in Sec.

The KdV equation is I[Ié]The AKNS system(2) for the KdV equation is given by

qt+6qqx+qxxxzo, nggl_, —OO<t<OO (19) r:_l, A:_47]3_27]q_qX,

whereq(x,t) is a real function. As shown in Appendix B, the B=—4720— 270w — Qu.— 202 — 49242 29
equation has the following stationary solution with two pa- 74200 Qo 20T, C=4n7+20. (22
rameters,y>0 andh<2(y/3)%% From Eq.(4), we have
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V2(a—c)

(4771 2a)(a-c)

o(X) (¢, m,k), (23

wherem=2(a—b)/(47%+ 2a), and

$p=am(3y2(a—c)x,k)

We also have, from Eq6),
a(n)=1657°—47%y+2h. (24

We further have, from Eq.7),

1
e — 3 ’
P= o 2qoo (O 47+ 27900 +a' (0],
(25)

wheref (&) is given in Eq.(8).
The Baklund transformation for the KdV equation i3]
q(x,t)=q(x)—2T,. (26)

Therefore, the new periodic solutions can be written as

G0=q00- — 1614342900
[27%+0(x) ]2
+q'(x)]+ m{—f (&)

+2[27%+900]1[279" (x)+9" ()]}, (27)
wheref (£) [and its derivative ' (£)] is given in Eq.(8), and
7 satisfies either conditio(®) or (11).

The asymptotic behavior far— + o can be given analyti-
cally for the cases o&(7)>0 anda(7n)=0. Whena(n)
>0,

—27°0%(X) + (47*— y)a(x) + 25%y—2h
[27%+q(x)]?

lim q(x,t)=

t— oo

_ @q'(x)
[27°+a(0)]?

sinf wo(X) +cg]+cosh wa(x)+cp]
cosh wa(X) +cq]=sinH wo(X) +Cq]

for a(7)>0. (28)

So, the asymptotic behavior whens o is different from that
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t—oo and whent— —c are both dominated by the same
term 1] o(x) —t+cy]?, and therefore are the same, i.e.,

lim q(x,t)

t—+o

2729 + (47" = y)q(x) + 277y 2h
[27%+q(x)]?

for a(zn)=0. (29

So, the new solution is not a kink solution wher- 0. When
a(n)<0, the solution is a tangent function of time and may
produce a profound effect on complicated dynamical behav-
ior when the system is perturbed.

Figures 2b) and Zc) show solutions given by Eq§27) for
7 satisfyingB(#n)=0. The values ofr, calculated from Eq.
(24), are real and greater than zero for both figufés.our
numerical study, we had not found a value pfsatisfying
B(7n) =0 that makesy(7)=<0. If there exists such a negative
a(n), then the solution contains tangent functions which
may lead to a singular solutignAs expected, asymptotic
behavior of the solutions when— and whent— —o are
different from each other. Figure(ld is obtained wheny
=0.5. Two stationary solitonsor, call them “cavitons’)
coexist in time. Thex dependence of the solution changes
gradually neat=0. Figure Zc) is for v=10. Only one sta-
tionary soliton exists at a time. THgpatia) location of the
soliton changes abruptly @=0. The solutions shown in
Figs. 2b) and Zc) are new solutions. Their asymptotic be-
haviors whent— +« are different from those wheh—
—o. The new solutions correspond to new types of ho-
moclinic orbits.

V. THE MKdV EQUATION

Now we consider the MKdV equation

Ui+ 60%0x+ Quxy=0, OsXs<L, —w<t<x (30)

whereq(x,t) is a real function. As shown in Appendix C, the
equation has the following stationary solutions characterized
by two parametersy andh> — (3/2) (y/2)*>:

_ (92U —q,V)en(yUVx,k)+q;V+q,U

X , (31
1x) (U=V)en(YUVx,k) +U+V 3D
where q;=3(—b+=b%—4y/b), g,=3(—b
—\J=b%2=4y/b), U=(b?>—b\—b?—4y/b—2y/b)*? V
=(b?+by\—b?—4y/b—2y/b)"? and k=[%
—3b%/(4UV)]¥2  for 0<k<j}. Here b=—{[2y?
+ 4%+ (4h/3)31Y3+[ 292 — Ay + (4h[3)31V312. This
solution is periodic with period. if
4K (K)=LUV. (32

whent— —o0, and the new solution is a kink solution. On Figure 3a) shows the stationary periodic solution for
the other hand, wher(#)=0, asymptotic behaviors when y=-0.05.
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(a)

ax)

Space Time

FIG. 3. The periodic solutions

1500 of the MKdV equation for the
1000 constant of integratiory=—0.05.

(a) The stationary periodic solu-

= 500 tion. (b) The periodic solution

R constructed from the stationary
periodic solution shown in(a)

_5(1)8 when = +0.2074. « is real and

a<0. (c) Same as(b) but %
==+1.4539 andx>0.

Time

4
Space Time
The functions in the AKNS system for the MKdV equa- B=—Gux— 270~ 479°— 20,
tion are given by 3] ) )
C=0xx—270x+47°q+29°.
r=—q, A=-47°-2709° (33  Thus,
|
Aq crP(VUVX, k) + Ay cn(VUVX,K) + Ag
o) :f dx, (34)

A, crP(NUVX,K) +As cn( VUV X, k) + Ag sn VUV, k) dn( VUV, K) + A,

where A;=(q.U—-q,;V)(U-V), A,=2(q,U—-q,V)(U a(n)=167°—y2—47h, (35)
+V)+2(q;-g)UV(U-V), Az=(U+V)*+2(q,

—q)UV(U+V), As=[y+47*(q,U—0q,V)/(U-V)](U

“V)2 As=2[y+4n*(qU—quV)/(U=V)](U-V?)

+87%(q,—g,)UV(U—V), Ag=—27(U—V)Juv, Whereh depends ony due to Eq.(32).

and A;=[y+47%(q,U—q;V)/(U—V)](U+V)2+89%(q, The Baklund transformation for the MKdV equation is
—q,)UV(U+V). Further, from Eq(6), [3]
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S APPENDIX A: THE STATIONARY PERIODIC SOLUTION
and therefore OF THE NLS EQUATION
A stationary solution of the NLS equatiofi2) can be
i = 14>)where the amplitude function
_ M\ A2y L an34 2 written asq(x) = p(x)€' ), where plitu :
Iv=[279"(x)=4n°q" (X) ][ (&) +47°+279%(x)] p(x) and the phase functios(x) are real functions satisfy-
—[y=279"(X)+47°9"(x)] ing
X - 2+2p°=0, Al
- q,gf); o 1O 4ma0a 0 | P P 2P Ay
/) Y
2px oyt pdyx=0. (A2)

(38)

The second equation can be writtengaép, = y, wherey is
wheref(¢) is given in Eq.(8). If one can find a value ofy & cons}an; of ins'gegration. _Therefore t,henotion_ is g_iven by
satisfying either Eq(9) or Eq. (11), then a new solution is Pxx~ ¥ /p”°+2p°=0. Equivalently, thep motion is gov-
obtained by substituting the expressions forand T’ into ~ €rned by the Hamiltonian
Eq. (36).

Figures 3b) and 3c) show the new solutions when is
required to satisfyB(»)=0. Figure 3b) is for «<0. It is
interesting to observe that rational solitons appear randomly
in space and time. Figuréd is for >0, where the solution whereh is a constant of motion. Hence, there are two cen-
is oscillatory whert<<0 and is solitary when>0. The pat- ters, at p,p,)=((¥*/2)¥6,0) and (- (y*/2)6,0). Whenh
tern change occurs abruptly &0 but no rational soliton > h,=3(y*/2)? periodic orbits exist in the neighborhood

appears. The new solutions shown in Figéh)3and 3¢)  of the centers. Leti=p?/2, then Eq.(A3) becomes
have the feature that their asymptotic behaviors when

+ are different from those whetr— — . They correspond 1, 4 4
to new types of homoclinic orbits. SUty tu =hu. (A4)

1 y* h
H(p,px)=§Pf+2—pz+§P4=§, (A3)

V1. CONCLUSIONS We write this equation as
For a integrable nonlinear evolution equation with the pe- u;=—2(u—a)(u—b)(u-c), (A5)

riodic boundary condition, we use the &dund transforma-

tion to construct a periodic solution from the stationary pe-wherea, b, andc are roots oli;= —2(u+hu—y*). Explic-

riodic solution. We give explicit conditions which should be itly, we havea=2h/3 cos@/3), b=2h/3 co§(4=+ 6)/3],

satisfied by the constant needed in the transformation due c=2\h/3co§(27+6)/3], where 6 is given by —y*

to the required periodicity. The functioR needed in the =2(h/3)%?cosé for w/2<#<. Therefore, the amplitude

transformation to construct a periodic solution is also giverfunction p(x) is as given in Eq.(13) with modulus k

explicitly. Hence we are able to give the analytical expres-=./(a—b)/(a—c) for 0<k<3. The expression for the

sion of the newly constructed solution. The time dependencphase functionp(x), as given in Eq(13), can be obtained

of the new solution can be the inverse, the tangent, the hyfrom ¢, = y?/p?.

perbolic tangent, or a combination of exponentials. According to periodicity of the Jacobian elliptic functions,

We apply this method to the NLS, the KdV, and the solution(13) is periodic if Eq.(14) is satisfied.
MKdV equation. The periodic solutions are given analyti-

cally. They are new because they were not explicitly written
down before. Numerical visualizations of the new solutions
are also given. All new solutions we obtained are kink solu-
tions. Therefore a pattern change should occur in a time A stationary solution of the KdV equatiaiil9) satisfies
(neart=0). The change can be gradual or abrupt, and can be

accompanied by the appearance of rational solitons distrib- 30%+Qyy= 7, (B1)
uted randomly in space and time. These new periodic solu-

tions correspond to new types of homoclinic orbits due towherey is a constant of integration. This equation is equiva-
different asymptotic behaviors in time. lent to Hamilton’s equations of motion with the Hamiltonian

APPENDIX B: THE STATIONARY PERIODIC SOLUTION
OF THE KdV EQUATION
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1
H=3p?+g*~yq=h, (B2)
wherep=gq, andh is a constant. Whery>0 and|h|<h,
=2(y/3)%?, this equation can be written as

92=—-2(q—a)(q—b)(g—c),

where a=2./y/3costl3, b=2.y/3cos@+4m)/3, and c
=2.\/yl3 cos@+2m)/3 are roots ofp’®=—2(q°—yq—h).
Here 6 is given byh=2(y/3)%?cos6 for 0<#<. In the
phase space, there is a center gtp)=(//3,0) and a
saddle point at € \/y/3,0) for the Hamiltonian system. In
the neighborhood of the center, E@®3) has solution(20)
with modulusk=\/(a—Db)/(a—c) for 0<k<1. The solu-
tion (20) takesy andh as parameters.

According to periodicity of the Jacobian elliptic functions,
solution (20) is periodic if Eq.(21) is satisfied.

(B3)

APPENDIX C: THE STATIONARY PERIODIC SOLUTION
OF THE MKdV EQUATION

The stationary solution of the MKdV equatid80) satis-
fies

Oxxt 2q3: Y, (Cy
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where y is a constant. This system is equivalent to the
Hamiltonian system with the Hamiltonian

1

2

2 4

H + ! _n C2
whereh is a constant. In the phase space, there exists only
one center, at d,p)=((y/2)¥30). When h>hy=—(3/
2)(y/2)*3, there is a family of periodic orbits surrounding
the center.

To find the solution of the Hamiltonian system, we write

Eq.(C2) as

92=(a—01)(d—02)(q—03)(q—da), (C3)

where q;=3(—b+b?—4c,), g,=%(—b—b’—4c,),
Oz=3%(—b+iJ4c,—b?), and q,=%i(—b—iJ4c,—b?)
are roots of p?=-3g*+yq+h. Here b={[2°
+\4y*+ (4h/3)%1Y3+ [ 292 — 4y + (4h/3)% 1312 ¢,
=b?/2+ yl/b, and c,=b?/2— y/b. Equation(C3) has solu-
tion (31) with modulus k=[3—3b%/(4\2b*+4+?/b?)]¥?
for 0<k<3.

According to periodicity of the Jacobian elliptic functions,
solution (31) is periodic if Eq.(32) is satisfied.

[1] M.C. Cross and P.C. Hohenberg, Rev. Mod. PH§5. 851
(1993.

[2] M.J. Ablowitz and P.A. ClarksonSolitons, Nonlinear Evolu-
tions and Inverse ScatteringCambridge University Press,
Cambridge, England, 1991

[3] K. Konno and M. Wodati, Prog. Theor. Phy&3, 1652(1975.

[4] C. Rogers and W.E. ShadwicRjicklund Transformations and
Their Application(Academic Press, New York, 1982

[5] A.H. Khater, O.H. El-Kalaawy, and M.A. Helal, Chaos Soli-
tons Fractals3, 1901(1997).

[6] J. Weiss, M. Tabor, and G. Garnevale, J. Math. PByis522
(1983.

[7] A.H. Khater, Astrophys. Space Scl62 151 (1989; A.H.

Khater, M.F. El-Sabbath, and D.K. Callebaut, Comput. Math.

Appl. 17, 1379(1988.

[8] P.J. Ovlver,Application of Lie Groups to Differential Equa-
tions (Springer-Verlag, Berlin, 1986

[9] W. Herman, A. Korpel, and P.P. Banerjee, Wave Motihn

283(1985; W. Herman, P.P. Banerjee, and M.R. Chatterjee, J.
Phys. A22, 241(1989; W. Herman and M.J. Takaokéid.
23, 4805(1990.

[10] W. Malfliet, J. Phys. A24, 5499(1991); Am. J. Phys60, 650
(1992; J. Phys. A26, L723 (1993.

[11] C. Li and S. Wiggins)nvariant Manifolds and Vibrations for
Perturbed Nonlinear Schinger EquationgSpringer-Verlag,
New York, 1997; Y. Li, D.W. McLaughlin, J. Shatah, and S.
Wiggins, Commun. Pure Appl. Mati9.11 1175(1996; Y.

Li and D.W. McLaughlin, J. Nonlinear Sc¥..3, 211 (19979.

[12] D.W. McLaughlin, E.A. Overman Il, S. Wiggins, and C.
Xiong, in Dynamics Reported—Expositions in Dynamical Sys-
tems New Series Vol. 5, edited by C. K. R. T. Jones, U.
Kirchgarder, and H. O. WoltheSpringer-Verlag, New York,
1996, pp. 190-237.

[13] N.N. Akhmediev and A. Ankiewicz,Solitons, Nonlinear
Pulses and Beamhapman & Hall, London, 1997



